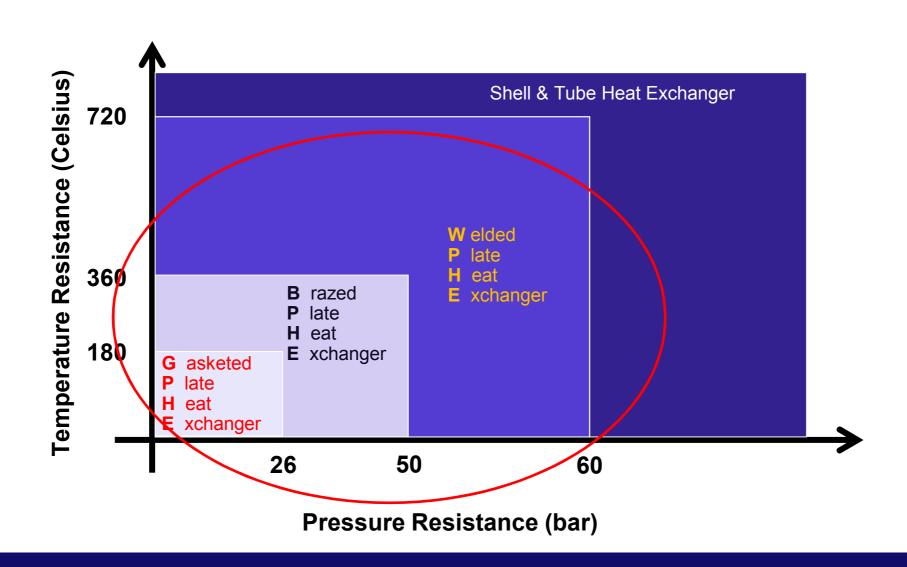
Products & Application

Agenda


	1. Gasketed Plate Heat Exchanger
	2. Wide Gap Plate Heat Exchanger
	3. Semi-Welded Plate Heat Exchanger
	4. LHEBloc (Welded PHE)
A	5. Spiral Heat Exchanger
A	6. Plate & Shell Heat Exchanger
•	7. Plate Coil Heat Exchanger
*	

1. Gasketed Plate Heat Exchanger

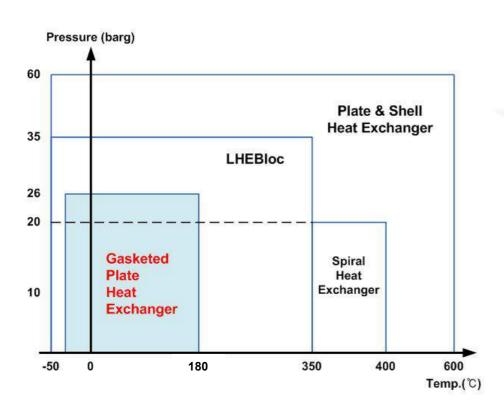
Physical Limit by H/X Types

PHE Applications

Power Plant

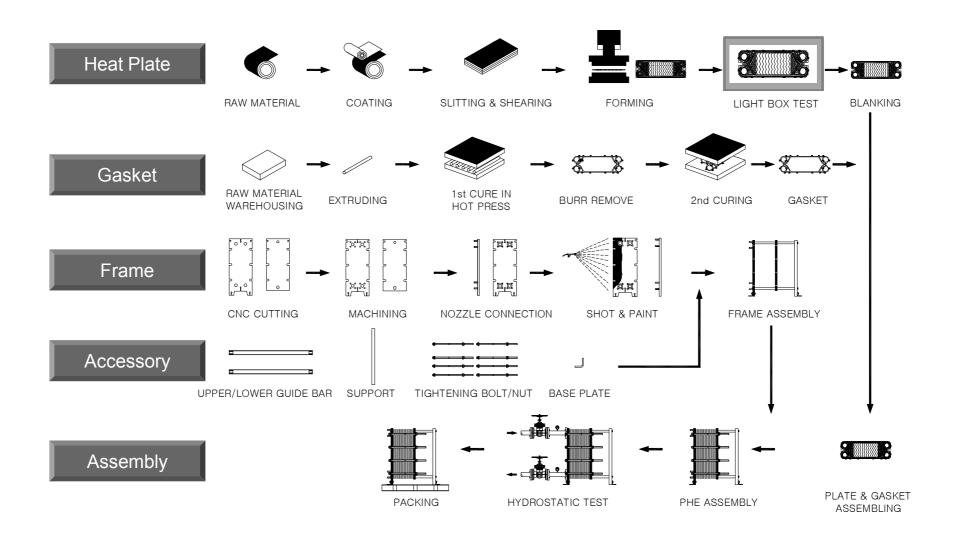
Food

Nuclear



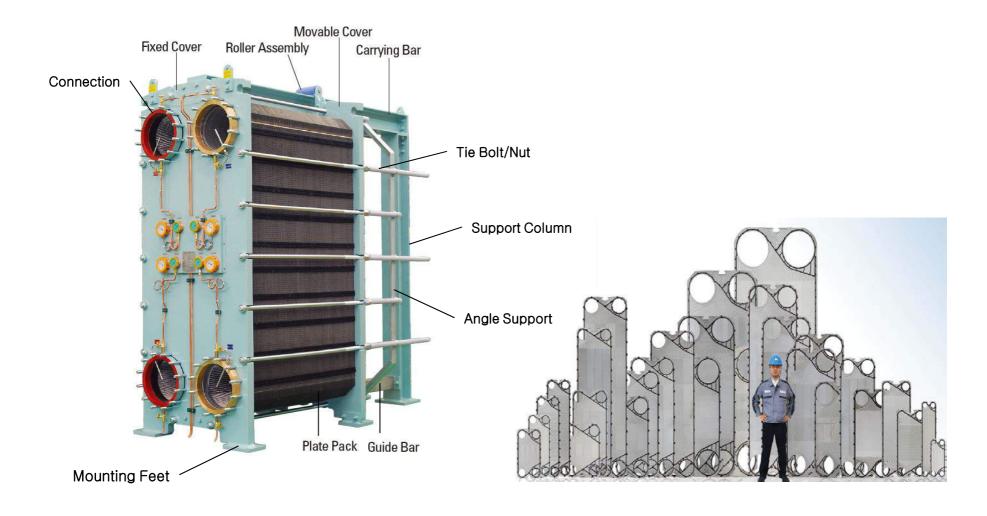
Medicine

Plate Heat Exchanger



Pressure and temperature limits

Application	Materials					
Plate	Stainless Steel : SS304, SS316L, 254SMO, 904L, 317L Nickel : Ni.200 Nickel alloy : C-276, 825, 625, Incoloy, Hastelloy Titanium : Ti.Gr.1, Ti. Gr. 11					
Gasket	NBR, EPDM, Neoprene, IIR, Butyls, Silicone, Teflon, Envelop(Special)					


PHE Fabrication Process

PHE Structure & Heat Transfer Plates

Plate - Materials

Standard materials and typical uses

SS 304

- Clean water to water duties
- Example, up to 50 ppm chlorides at 50°C

SS 316L

- Water to water duties
- Example, up to 250 ppm chlorides at 50°C

254 SMO (high-alloy stainless steel)

- High chloride water to water duties
- Example, up to 6000 ppm chlorides at 50°C

Titanium

• Sea water (3.5% chlorides)

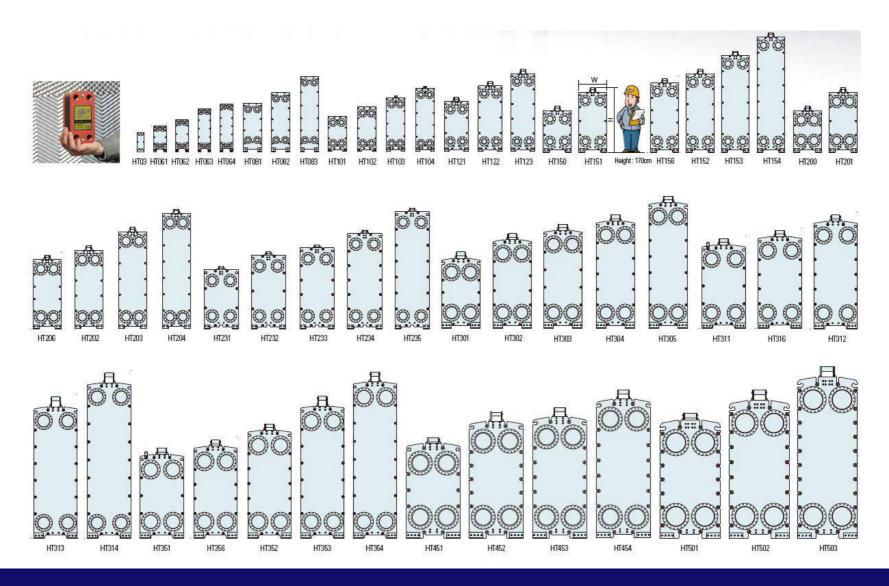
Titanium Palladium

- Sea water at high temperature (>130°C)
- High concentrated chloride brines at high temperature

Nickel 200/201

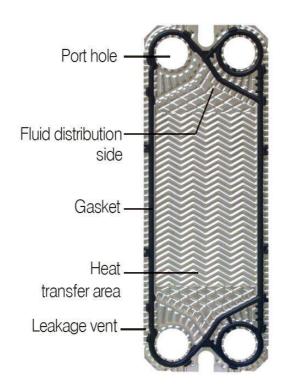
Sodium hydroxide production

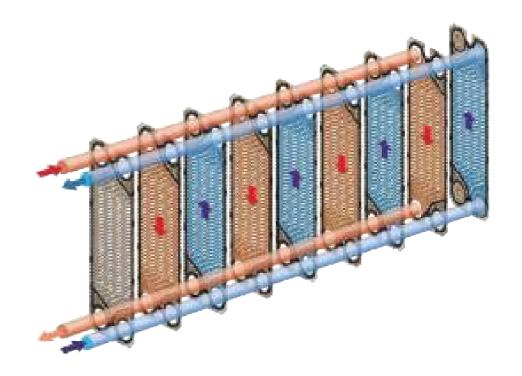
Alloy C-276 (Nickel alloy)


Typically for concentrated sulphuric acid up to 90°C

Alloy G-30

Sulphuric acid application (scrubber)


LHE PHE Models



Structure & Principle

Heat Transfer Plate

Flowing diagram of fluid

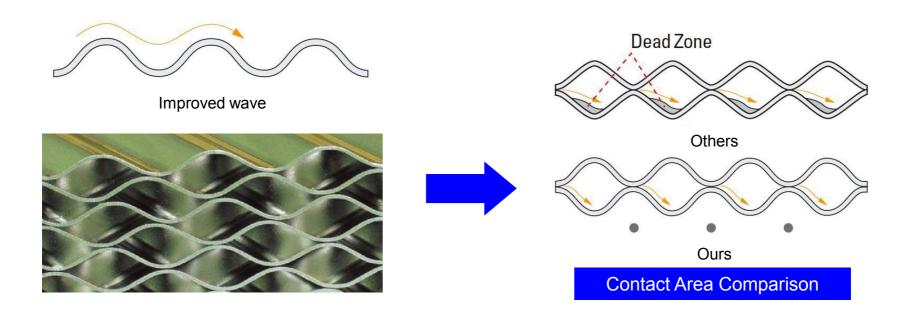
Strength & Application

Strength


- Minimum Space for Installation
- High Efficiency
- Low Fouling
- Diversity of Flow Channel
- Minimum Heat Loss
- Temperature Approach
- Easy Disassembly and Assembly

Application

- Marine, Chemical Industry, Power plant
- Architecture Industry, Steel Industry, Mechanical Industry
- Food, Paper, Textile


Features of LHE Plate

Features of LHE Plate

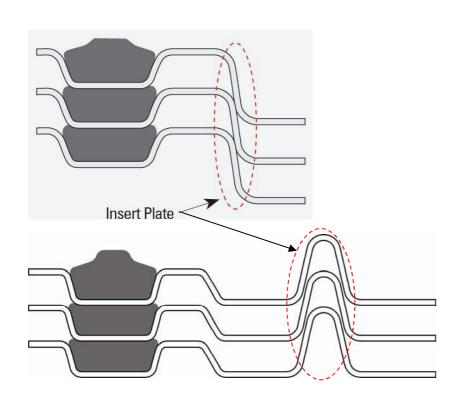
Improved wave → Minimized DEAD ZONE

14

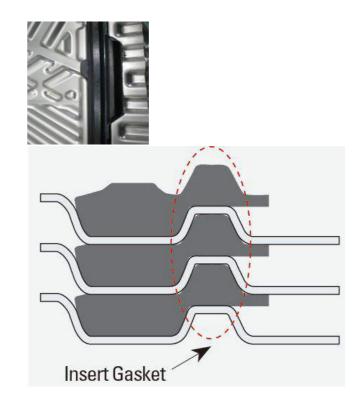
Wide contact area

Increased Strength of Structure

► Improvement of Durability


• Improved Durability and Anti-corrosion

• Minimized Fatigue stress


► Anti-Corrosion

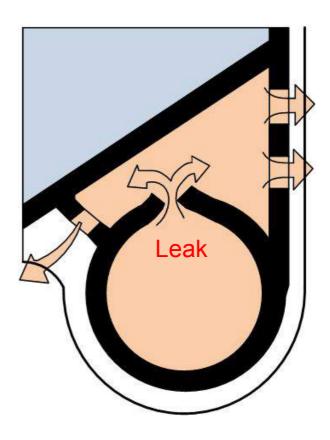
Features of LHE Plate

Easy Plate Arrangement

Good Sealing Performance

Features of LHE Gasket

LHE Clip-on type gasket

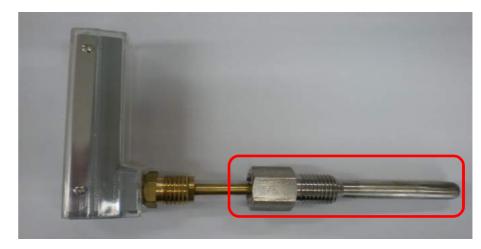


No Slip in assembling No Misassembling

Features of LHE Gasket

Prevention of intermixing of the media in the corner areas

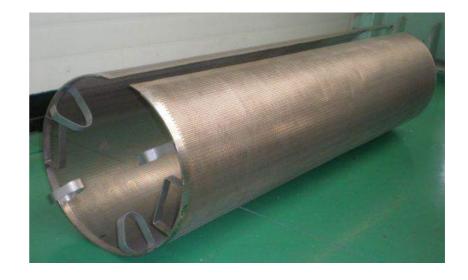
Special Features



Tie bolt (tightening bolt)
Adding of Bichromate treat (anti-corrosion)

Zinc Plating

Bichromate-Treat


Thermo well
Sea Water: 316LSS, Brass → Titanium

Special Features

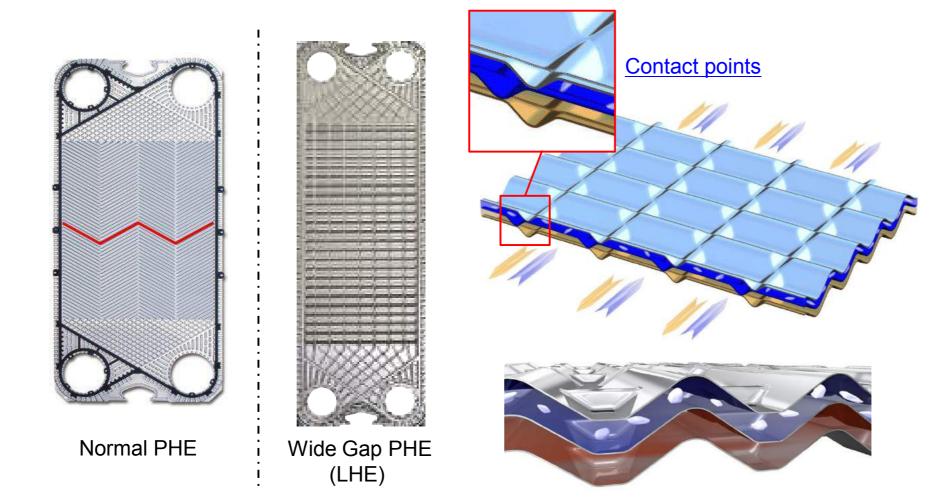
Titanium Inline Lining

Titanium Inline Filter

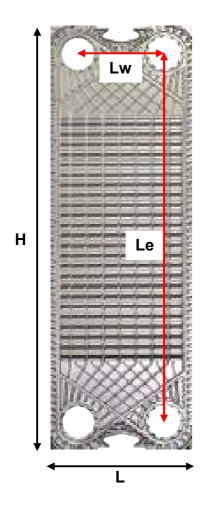
Special Features

Rubberized Instrument Flange

2. Wide Gap Plate Heat Exchanger


Wide Gap PHE

- Same principle as the normal PHE
- Significantly wider flow cross section between the plates
- Minimize the number of contact points
- Efficiently handle fluids with
 - Fruit juices containing fibers and pulps,
 - Waste water in the paper and pulp,
 - Textile, Sugar industries
 - Highly viscous products

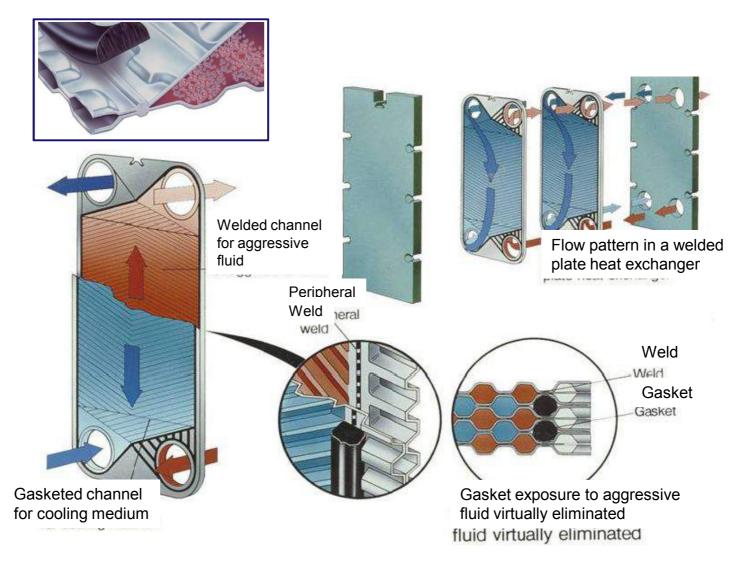

Differences Between Each PHE

Heat Plate Dimension

MODEL		Port Dia. (mm)	H (mm)	L (mm)	Le (mm)	Lw (mm)	Depth(mm)
	HW101		1,096	493	879	295	5
HW100 Series	HW102	Ф100	1,419	493	1,311	295	5
	HW103		1,938	493	1,743	295	5
	HW232		1,884	750	1,540	465	6
HW230 Series	HW234	Ф230	2,316	750	1,972	465	6
	HW235		2,892	750	2,548	465	6
	HW331		2,100	1,000	1,668	550	6
HW330 Series	HW332	Ф330	2,480	1,000	2,100	550	6
	HW333		2,964	1,000	2,464	550	6

3. Semi-Welded Plate Heat Exchanger

Semi-Welded PHE

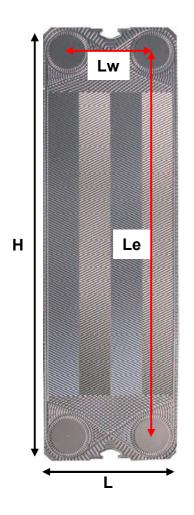

Semi-Welded PHE: Widely used for refrigerants like ammonia and

freon, chemical and general process duties

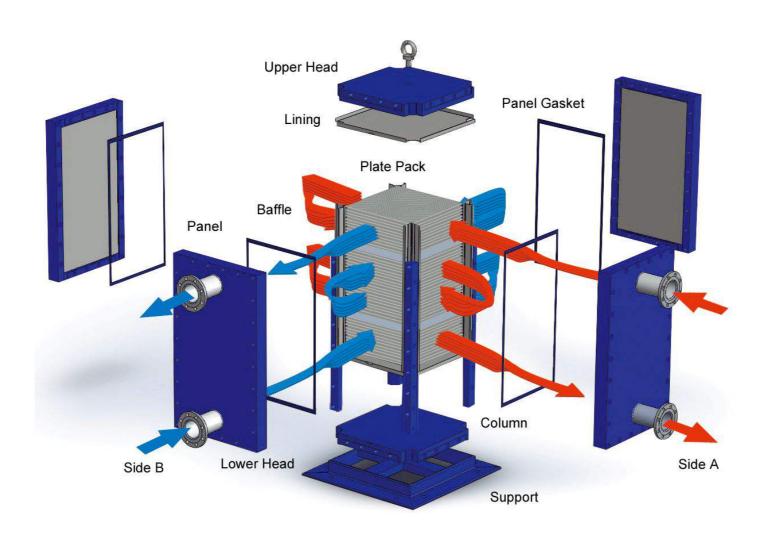
- Alternation of welded channels and gasketed channels
- The refrigerant : in welded channels
- The secondary medium : in gasketed channels
- * The gaskets in contact with the refrigerant :
 two circular porthole gaskets between the welded plate pairs

Feature of Semi-Welded PHE

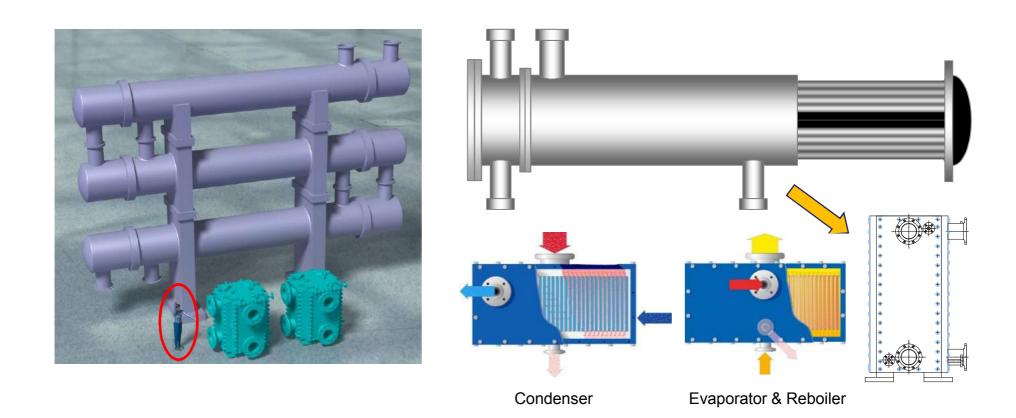
Laser Welding



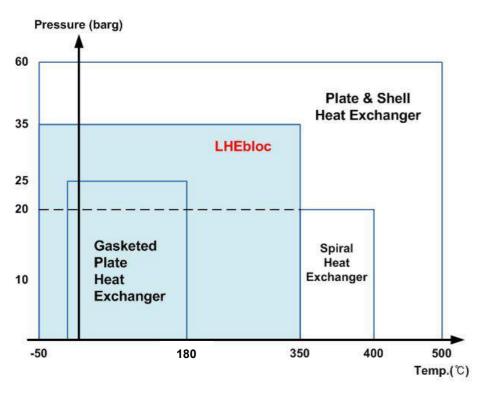
Heat Plate Dimension


MODEL		Port Dia. (mm)	H (mm)	L (mm)	Le (mm)	Lw (mm)
	HW101		925	493	743	310
HW100 Series	HW102	Ф100	1405	493	1223	310
	HW103		1885	493	1703	310
	HW232		1700	750	1416	465
HW230 Series	HW234	Ф230	2420	750	2136	465
	HW235		2900	750	2616	465
	HW331		2000	1000	1584	580
HW330 Series	HW332	Ф330	2480	1000	2064	580
	HW333		2960	1000	2544	580

4. LHEBloc (Welded Plate Heat Exchanger)

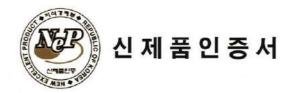

Basic Structure of LHEBloc

Advantages for LHEBloc



The LHEBloc requires less space!

LHEBloc



	Minimum	Maximum			
Heat Transfer Area(m²/set)	0.62	320			
Design Temperature($^{\circ}$ C)	- 50	350			
Design Pressure(bar)	Full Vacuum	35			
Application Code	ASME, KS, JIS, BS, PED				
Plate Material	- Stainless Steel: SS304, SS316L, 254SMO - Nickel: Ni.200 - Nickel alloy: C-276, 825, 625, Incoloy, Hastelloy - Titanium: Ti.Gr.1, Ti.Gr.11				

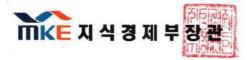
Pressure and temperature limits

NEP(New Excellent Product) Certificate (

제 품 명 블록타입 판형 열교환기 (300, 500, 750, 1000, 1200mm)

회사명 (주)엘에치이

대표자 남상돈


소재지 경남 김해시 한림면 장방리 1089번지

인증번호 NEP-MKE-2012-041

유효기간 2012. 12. 27 ~ 2015. 12. 26


위 제품을 「산업기술혁신 촉진법」제16조에 따른 신제품으로 인증합니다.

2012년 12월 27일

Cleaning of LHEBloc

Easy Cleaning & Quick Repair

References & Customers

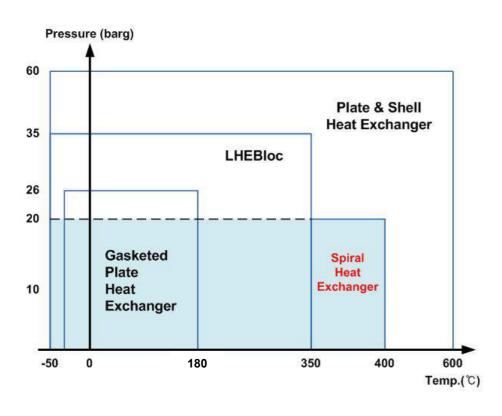
No. P	ALCOHOLD .	Contractor		Model	Quantity	Delivered time	Design specification				2000						
	Plant Name		Country				Fluid (Hot/Cold)	Flow Rate (kg/h)	Design Temp (°C)	Design Pressure (bar)	Cert.	Services					
				LIODEO CDC 450	ew.		E-2521A	44,700	186	14.5		2nd MeOH Column Hot Water Cooler					
	НРРО		KOREA	HCB50-6P6-150	1	09-Oct	Water	39,100	186	14.5							
1		skc		HCB50-2P2-150	1		Hot water	166,000	186	34.7	Government	FF Evaporator					
							E-2630	89,740	186	34.7		Pre-heater					
				HCB50-1P10-300	1		MPG,AIR,H₂O	147,000	186	14.5		PG Column Condenser					
							Water	70,000	186	14.5							
2	LODebei	LO Dahai	Ohina	LIODAN ED CO	8-24	00.5	Water	30,000	105	5.0		Heat Evaluation					
2	LG Bohai.	LG Bohai.	China	HCB30-5P-60	1	09-Dec	Water	25,000	80	5.0		Heat Exchanger					
3	Mirou Chlor Co		Iron	HCB30-1P6-80	1	10-Jan	Wet Chlorine Gas	1,514	95	1.0		Wet Chlorine Gas Cooler					
3	Nirou Chlor Co	150	Iran	HCB30-1P6-80	16	10-Jan	Water	21,880	65	6.0	(a)						
- 3	Waste Water	01/0	16	UOD75 2D4 000	- 2	40 1124	E-2513	10,340	186	14.5		Heat Exchanger					
4	Recovery	SKC	Korea	HCB75-3P4-220	1	10-Mar	E-2513	183,200	186	14.5	Government						
-	+ 100	M 0-1-F	n Turkmenistan	HCB75-6P1-250	2	11-Jan	Lean	13,233	230	10.2	- ASME U	Rich/Lean Solvent Exchanger					
5	Turkmengas	Aker Solution					Rich TEG	13,613	150	10.2							
		KEP		HCB30-10P5-100	1		T240 Reflux	8,000	110	5.1	- Government	T240 Heat Exchanger					
	KEP					11-Jun	T280 Feed	20,000	110	5.1							
			12	HCB30-10P5-130	1		T240 Bottom Liquid	10,290	170	6.5		T240 Heat					
6			Korea				T240 Feed Liquid	16,000	170	6.5		Exchanger					
			**	HCB50-1P-150	2		Steam	2,462	175	7.0		Re-boiler					
							Water	8,066	175	4.1							
		KOSGEA	Korea	HCB30-2P-60	1	- 11-Jun -	Waste Water	18,650	145	10.3		Waste Water Heat Exchanger					
7	ST&TJ						Waste Water	16,710	145	10.3							
7				HCB30-6P2-100	1		Waste Water	10,730	100	10.3							
								HCB30-0F2-100	•		Water	22,290	100	10.3			
	Methanol Distillation Column	ation SKC							UCD50 0D40 000	1		Propane, Propylene+N2	10,730	186	34.7		Reactor Offgas
			SKC Korea	HCB50-8P16-300	1	11-Jul	Cooling Water	22,290	186	7.0	Coversment	Cooler					
				HCB50-1P4-250	1		MeOH,PO,Propane,H ₂ O	16,650	186	6.2		Pre-Separator					
							MeOH,PO,Propane,H₂O	98,630	186	11.8		Condenser					
				HCB75-2P4-200	2		MeOH, Ethanol,H₂O	3,861	186	14.5		1st MEOH-Colun					
8							Hot Water	57,000	186	14.5	Government	Condenser					
				HCB30-5P7-230 HCB30-2P2-100	1		MeOH, Ethanol,H₂O	52,640	186	14.5		2nd MEOH-					
							Hot Water	57,000	186	4.5		Condenser					
					1		MeOH, Ethanol,H₂O	4,648	100	10.6		MEOH-Column O/H Trim Condenser					
							Cooling Water	111,700	100	7.0							

4 7	Plant Name	Contractor	1	66	*	Delivered	\$	Design s	pecification			
No.			Country	Model	Quantity	time	Fluid (Hot/Cold)	Flow Rate (kg/h)	Design Temp (°C)	Design Pressure (bar)	Cert	Services
	BAPCO (Waste Water Treatment Plant)	GS E&C	Bahrain	HCB75-3P1-250	4		Cooling water Waste water	5,009,475 999,198	65 65	5.0 5.0	8	1st Influent Cooler
9				HCB-50-1P-100	2	- 11-Oct	Softened chilled water Waste water	479,998 999,999	65 65	5.0 5.0	ASME U	2nd Influent Cooler
				HCB50-4P8-150	1	11-Nov -	Recovered Oil Eth Glycol 50%	2,700 1,800	160 160	12 14		Glycol Exchanger
				HCB50-5P-200	1		SALES OIL	68,850	185	10.9	ASME U & ABSA (Alberta Boilers Safety Association)	Dru Feed Preheater
	Black Gold PJT.			HCB50-5P-150	1 2 1		DIL-BIT SALES OIL	73,970 70,250	160 185	14 25.4		Sales Oil Cooler
10		GS E&C	Canada	2			BFW SALES OIL	12,390 34,420	241 185	33 10.8		
				HCB75-7P-450			ETH.GLYCOL 50% PRODUCED	24,930 2,260	160 225	14 25.4		Cooler Produced Gas/
				HCB75-6P-150			GAS BFW	10,650	241	33		BFW Exchanger
				HCB75-6P-150	1		PRODUCED GAS ETH.GLYCOL 50%	2,258 2,250	225 160	18.2 14		Produced Gas Trim Cooer
11	-	skc	Korea	HCB30-3P6-160	2	12-Apr	Polyol Water	30,000 79,330	130 60	5.0 5.0	Government	Polyol RX Cooler
12	-	KOLON	Korea	HCB30-6P6-60	1	12-Apr	Light Oil 30% E.G	2,500 2,192	70 30	10.0	Government	Light Oil Cooler
13	<u> </u>	KOLON	Korea	HCB30-2P2-100	1	12-Apr	1,3-Butadiene 32% E.G	1,700	60 60	10.0	Government	Butadiene Condenser
14	-	AEKYUNG	Korea	HCB30-1P2-160	5	12-May	O.A + Water	14,740 6,000	210	10.0 3.1	Government	Condenser
15	-	KOLON	Korea	HCB30-6P6-60	1	12-Jun	Water Hot Oil	143,000 2,400	70 150	5.0 3.5	Government	Heaw Oil Cooler
		195.5099355555	Noted			Palan Long Cont	Brine F-TCG	15,160 2,400	150 230	4.5 10.0	Government	- AMERICAN AND COMPANY
16	8	KOLON	Korea	HCB30-6P2-60	1	12-Jun	ccw	9,377	70	10.0	1 10-01	Oligomer Cooler

No.	Plant Name			100000	L. CHILL	Delivered		Design s	pecification			
		Contractor	Country	Model	Quantity	time	Fluid (Hot/Cold)	Flow Rate (kg/h)	Design Temp (°C)	Design Pressure (bar)	Cert.	Services
			Korea	HCB30-4P6-130	1	12-Dec	T-240Q Bottom Sol.	10,290	170	4.5	(EW)	T-240Q Feed Preheater
			Korea	HCB30-4P6-130	1		T-240Q Feed Sol.	16,000	170	6.5		
		1	12,0730000	HCB75-2P1-350	1	12-Dec	5kg Steam	17,300	180	7.0	Causananan	T-240Q Reboiler
			Korea	HCB75-2P1-350	7.		T-240Q Bottom	56,630	175	4.1	Government	
		9	17	UOD75 0D4 000	839	12-Sep	T-240Q Distillate Vapor	10,620	150	5.0	Government	Reboiler
			Korea	HCB75-2P1-200	1		T-280Q Bottom	25,770	150	5.0		
		9	12	HCB30-10P5-100	1520	40.0	T-240Q Distillate Vapor	8,000	120	6.5	150	T-280Q Feed Preheater
	K2Q		Korea		1	12-Dec	T-280Q Feed Sol.	20,000	100	4.5		
224		K.E.P	Korea	HCB50-1P4-300	1	12-Dec	T-280Q Distillate Vapor	17,390	230	10.0	150	T-280Q Condenser
17							C.W	333,500	70	10.0		
		9	Korea	HCB75-2P1-500	1	12-Dec	T-240Q Distillate Vapor	7,645	230	10.0	Government	T-360Q Reboiler
							T-360Q Bottom	60,520	70	10.0		
			Korea	HCB30-6P5-100	1	12-Dec	Hot Water	9,053	100	7.0	(TV)	T-360Q Feed Preheater
							T-360Q Feed Sol.	16,600	95	5.5		
			Korea	HCB30-6P5-100	1	12-Dec	Hot Water	17,240	100	7.0	: init	T-360Q Reflux Preheater
							T-360Q Reflux	28,010	95	5.5		
			Korea	HCB30-1P1-100	1		5kg Steam	1,255	180	7.0	Government	T-380Q Reboiler
						12-Dec	T-380Q Bottom	9,840	140	1.0		
		LHE	-	110075 404 050	5-20	40.0	Lean Solution	120,000	150	25.0		24000
18	5	ENGINEERING	Russia	HCB75-4P4-350	1	12-Dec	Rich Solution	111,400	150	25.0	1757	P1280
-			KSA	HCB75-18P18-500		22.7	Cold Condensate	847,350	241.0	35		Cold Heat Recovery
	MA'ADEN STEAM PLANT	SECL			9	13-Jan	Deaerator Feed Water	947,835	146.0	15.4		Heat Exchager
19				HCB75-4P2-200	3	13-Jan	Hot Condensate	567,000	241	35	ASME U	Hot Heat Recovery Heat Exchager
							Deaerator Feed Water	947,835	160	15.4	5	
22		LHE	12000000000		5000	22227070	H2SO4	45,990	200	6.0	Ĭ	120000000000000000000000000000000000000
20	5	ENGINEERING	Russia	HCB30-7P7-160	1	13-Jan	Water	26,090	200	6.0	378	Cooler of Acid

5. Spiral Heat Exchanger

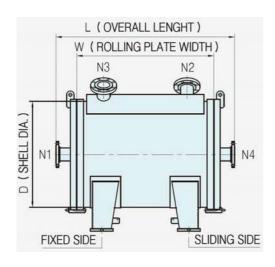
Applications



The perfect solution from dirty fluids to high vacuum condensation

Fluid	 Fouling liquids : containing solids, fiber, liquors, slurries and sludge Gases : pure vapor and mixtures with inert gases
Duty	 Liquid / Liquid : Preheating, Heating, cooling, Interchanging, Heat recovery Vapor / Liquid : Top condenser, Reflux condenser, Vacuum condenser Vent condenser, Reboiler, Gas cooler
Industry	 Petrochemical Refinery Steel making Pulp and paper Metal/ore processing Wastewater treatment Pharmaceutical Vegetable oil processing Distillery

Spiral Heat Exchanger


	Minimum	Maximum				
Heat Transfer Area(m ²⁾	5	600				
Design Temperature(℃)	-50	400				
Design Pressure(bar)	Full Vacuum	20				
Application Code	ASME, KS, JIS, BS, PED					
Plate Material	 Carbon steel Stainless Steel: SS304, SS316L, 254SMO, 904L Nickel: Ni.200 Nickel alloy: C-276, 825, 625, Incoloy, Hastelloy Titanium: Ti.Gr.1, Ti.Gr.11 					

Product ranges

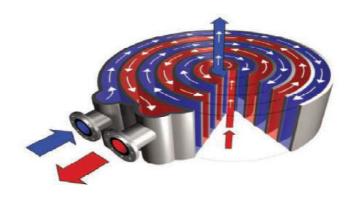
To meet requirements for a range of sizes and specifications

→ Customized Products

D: Max. Ф2200 mm

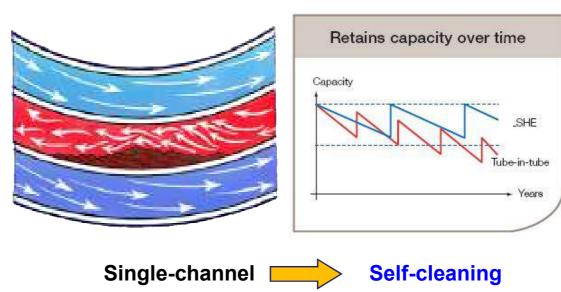
W: Max. 2000 mm

Applications for Spiral Heat Exchanger



Waste Cooler

PVC Slurry Heat Exchanger



PCW Cooler

Advantages of Spiral Heat Exchanger (

- Easy Cleaning (quick repair)
- Gaskets: Using 2 packing gaskets for girth flanges

- Client : Korea Engineering plastic
- S&T Heat Exchanger Replacement PJT
- Vapor condenser

- Client : The Japan Steel Work
- PCW Cooler

• Client : LG MMA

• YM-2 PJT

Heater & Cooler

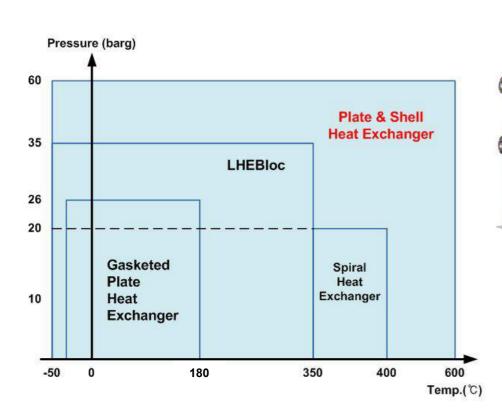
Client : LG MMA

• YM-3 PJT

Heater & Cooler

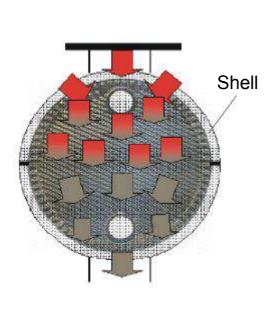
- Client : LG Chemical
- PVC Slurry Heat Exchanger

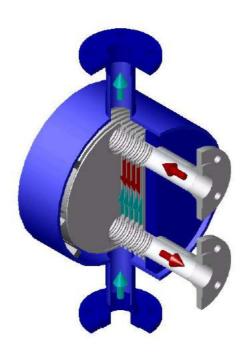
- Client : Hyundai Steel
- Cokes Oven Gas Refinery Plant PJT
- Cooler 29 sets



6. Plate & Shell Heat Exchanger

Plate & Shell Heat Exchanger


Pressure and temperature limits



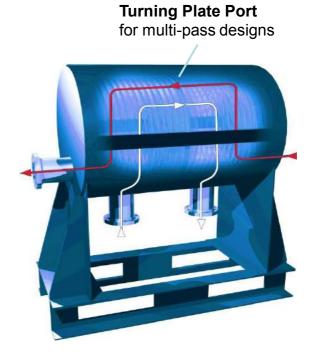

	Minimum	Maximum				
Heat Transfer Area(m ²⁾	0.3	1500				
Design Temperature(℃)	-50	500				
Design Pressure(bar)	Full Vacuum	60				
Application Code	ASME, KS, JIS, BS, PED					
Plate Material	- Stainless Steel: SS304, SS316L, 254SMO - Nickel: Ni.200 - Nickel alloy: C-276, 825, 625, Incoloy, Hastelloy - Titanium: Ti.Gr.1, Ti.Gr.11					

Plate & Shell Heat Exchanger

Plate & Shell Heat Exchanger

	Model	2A	2B	2B0	3A	3B	3B0	6A	6B	6C	6A1	6B1
F	Flat Length of Flange [mm]	0	192	192	0	303	303	0	278	555	0	278
G	Flange Length [mm]	330	522	522	490	793	793	795	1073	1350	795	1073
Н	Distance between Con. 1 [mm]	400	620	620	650	950	950	1000	1250	1550	1000	1250
I	Distance between Con. 2 [mm]	0	192	192	0	303	303	0	278	555	0	278
J	Flange Thickness [mm] (at 10bar.g / 20bar.g)	22 / 30	30 / 40	30 / 40	26 / 40	35 / 50	35 / 50	32 / 54	45 / 70	50 / 75	32 / 54	45 / 70
К	Heat Exchanger Length [mm] (Max. of Plate Number)	450	450	450	600	600	600	800	800	800	800	800
	Model		6B2	6C2	10A	10B	10C	10A1	10B1	10C1	10B2	10C2
F	Flat Length of Flange [mm]	555	278	555	0	322	644	0	322	644	322	644
G	Flange Length [mm]	1350	1073	1350	1260	1582	1904	1260	1582	1904	1582	1904
Н	Distance between Con. 1 [mm]	1550	1250	1550	1500	1800	2150	1500	1800	2150	1800	2150
I	Distance between Con. 2 [mm]	555	278	555	0	322	644	0	322	644	322	644
J	Flange Thickness [mm] (at 10bar.g / 20bar.g)	50 / 75	45 / 70	50 / 75	45 / 70	60 / 90	70 / 105	45 / 70	60 / 90	70 / 105	60 / 90	70 / 105
К	Heat Exchanger Length [mm] (Max. of Plate Number)	800	800	800	1200	1200	1200	1200	1200	1200	1200	1200

Applications of Plate & Shell Hx.

Refinery heat exchangers

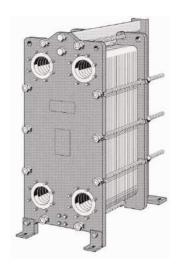
- Heaters, Coolers
- Condensers, Evaporators
- Cascade evaporators

Petrochemical plant heat exchangers

- Heaters, Coolers
- Condensers, Evaporators
- Economizers

Applications of Plate & Shell Hx.

Oil and gas production heat exchangers


- Crude oil coolers and heaters
- Gas coolers and heaters
- Amine coolers
- Heat exchangers for dehydration packages
- Refrigeration applications

Oil and gas handling and transportation heat exchangers

- Oil heaters and coolers
- LPG coolers and heaters
- LPG condensers
- Heat exchangers for gas treatment facilities in gas terminals

Advantages of Plate & Shell Hx.

- + Compact
- + Low Fouling
- + Close Approach Temperature
- Low Pressure
- Low Temperature
- Gaskets

- + High Pressure
- + High Temperature
- + No Gaskets
- Large size / Weight
- High Fouling

- + High Pressure
- + High Temperature
- + No Gaskets
- + Compact
- + Low Fouling
- + Close Approach Temperatures

Advantages of Plate & Shell Hx.

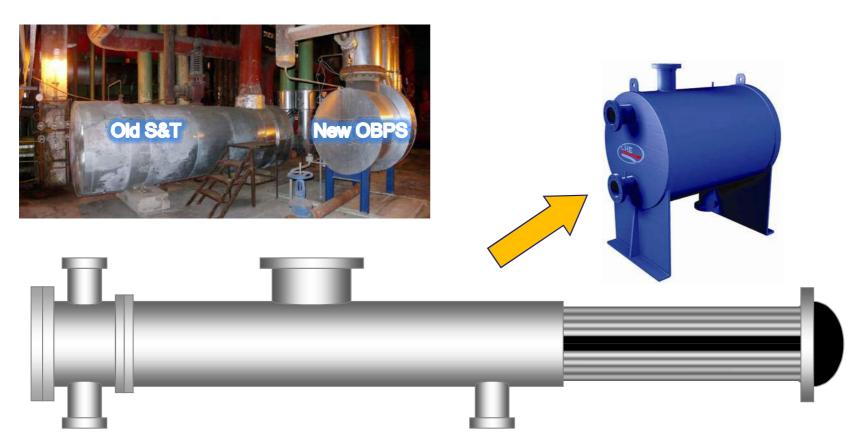
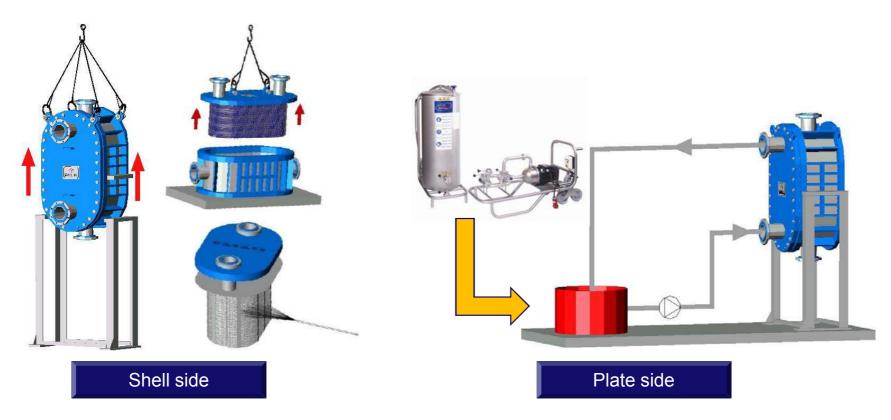



Plate & Shell Exchanger requires less space!

Advantages of Plate & Shell Hx.

- Easy Cleaning (quick repair)
- Gaskets: Using 1 packing gaskets for girth flanges

- Client : Korea District Heating Corp.
- S&T Heat Exchanger Replacement PJT
- Combined Heat and Power Generation

• Client : LG Chem. Daesan

• Water Heater (Duty: 4,418 MW)

• Model : OBPS-10B-1P1-144

· Client: Kolon Chem.

• Vent Condenser(Duty : 6 × 3000 kW)

• Model : OBPS-6C-1P1-160

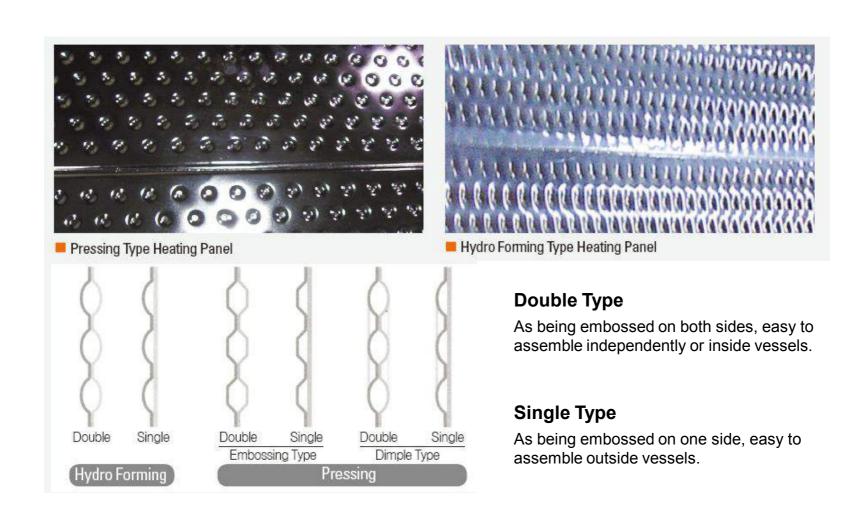
• Client : Korea District Heating Corp.

• Steam Condenser (3 x 31 MW)

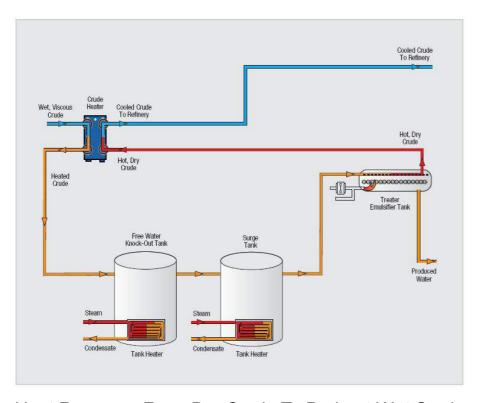
• Model: OBPS-10A1-1P1-246

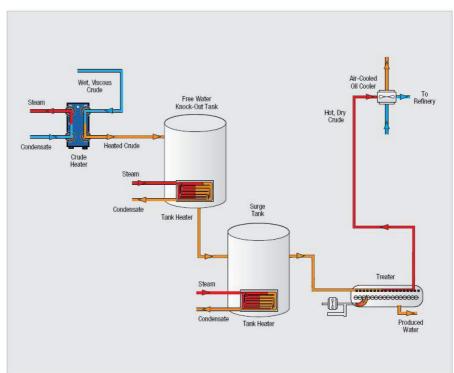
7. Plate Coil Heat Exchanger

Plate Coil Heat Exchanger

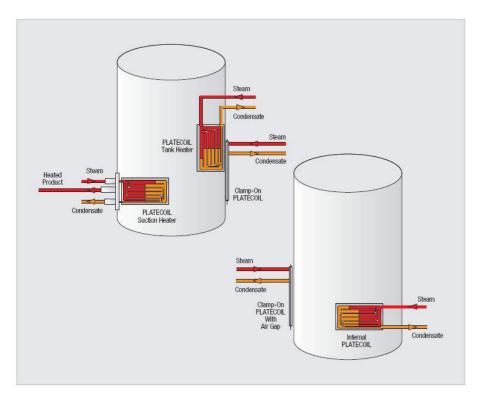


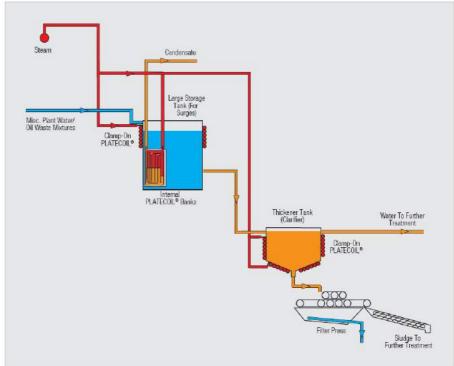
Crystallizer Heater & Cooler


Plate Coil Heat Exchanger



Applications for Plate Coil Heat Exchanger




Heat Recovery From Dry Crude To Preheat Wet Crude

Heating Crude Oil To Remove Sand And Water

Applications for Plate Coil Heat Exchanger

Storage Tank Heating

Downstream Processing - Waste Liquids Heating

PVC Dryer Heating Panel Client: LG Chemical, Korea

Panel Heater

Storage Tank Heater

Quenching Water Cooler

EPS Slurry Cooler

Please Test LHE!!

Innovative Solution Provider - LHE